Subsurface monitoring aspects of CO₂ storage in a saline aquifer
Peter Rowbotham, Steve Furnival, Craig Webster, Iulia Wright, Alastair Brown (AGR TRACS), Rohan De Silva (NGC)

The Don Valley CCS Project is co-financed by the European Union's European Energy Programme for Recovery
The sole responsibility of this publication lies with the author.
The European Union is not responsible for any use that may be made of the information contained therein.
Overview

- “5/42” store characterisation & modelling
- Aspects of MMV (measurement monitoring and verification)
 - Need to demonstrate that the injected CO$_2$ is contained within the geological store during and after injection
 - 4D seismic feasibility
 - Microseismic feasibility
- Conclusions
The Don Valley CCS Project is co-financed by the European Union’s European Energy Programme for Recovery. The sole responsibility of this publication lies with the author. The European Union is not responsible for any use that may be made of the information contained therein.
Characterisation of 5/42

- 2010-12 Regional screening studies
- 2012-15 Detailed characterisation of 5/42
 - 2013 NGC drilled & tested UK’s first dedicated Carbon Capture & Storage appraisal well, 42/25d-3 funded by EEPR & ETI
 - Extensive log, core and testing programme – DEVEX 2014
5/42 Top Bunter Depth Surface

Massive saline aquifer in Bunter Sandstone of UK SNS

200 – 250 m thick
>1000 m deep

Phi – 15-25%
K – 10-1000mD

The Don Valley CCS Project is co-financed by the European Union’s European Energy Programme for Recovery
The sole responsibility of this publication lies with the author.
The European Union is not responsible for any use that may be made of the information contained therein.
Data Acquisition in 42/25d-3
(presented at DEVEX 2014)

The most comprehensive data gathering program in a UK well for years
Modelling of 5/42

Plan for First Load is injection of 2.68 Mt/yr for 20 years. Reservoir models predict CO₂ moves to structural crest

Seal provided by Haisborough Gp halites / shales

Injection downdip within Bunter Sandstone

The Don Valley CCS Project is co-financed by the European Union’s European Energy Programme for Recovery. The sole responsibility of this publication lies with the author. The European Union is not responsible for any use that may be made of the information contained therein.
Overview

- “5/42” store characterisation & modelling
- Aspects of MMV (measurement monitoring and verification)
 - 4D seismic feasibility
 - Microseismic feasibility
- Conclusions
MMV objectives

- Need to demonstrate through monitoring that the injected CO$_2$ is contained within the geological store during and after injection
- Comparison of actual vs modelled CO$_2$ plume migration
- Verification of well and reservoir integrity
- Metering of injected CO$_2$ & permanent in-well monitoring (e.g. pressure, temperature) for injectivity
- Campaigns of geophysical monitoring, well logging
Monitoring technologies screening

<table>
<thead>
<tr>
<th>Technology</th>
<th>Purpose</th>
<th>Reliability</th>
<th>Installation / Baseline Cost</th>
<th>Maintenance Repeat Cost</th>
<th>Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D Time Lapse Survey</td>
<td>Plume migration</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Swath Time Lapse Survey</td>
<td>Plume migration</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3D Time Lapse Survey</td>
<td>Plume migration</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertical Seismic Profiling</td>
<td>Limited application</td>
<td></td>
<td></td>
<td>Not considered</td>
<td></td>
</tr>
<tr>
<td>Micro Seismic – Sea Bed</td>
<td>Integrity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cross Well Seismic</td>
<td>Limited application</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magneto-Telluric</td>
<td>Limited application</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSEM</td>
<td>Limited application</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gravity – Sea Bed</td>
<td>Plume migration</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autonomous Underwater Vehicle</td>
<td>Integrity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Landers (Sea Bed Monitoring)</td>
<td>Integrity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Well / Production Logging</td>
<td>Integrity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wellhead Pressure</td>
<td>Injection rate / integrity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wellhead Temperature</td>
<td>Injection rate / integrity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface Volumetric Flow Rate</td>
<td>Injection rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Downhole Pressure Gauges</td>
<td>Injection rate / integrity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Downhole Temperature Gauges</td>
<td>Injection rate / integrity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distributed Temperature Sensing</td>
<td>Injection profile</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distributed Acoustic Sensing</td>
<td>Integrity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Downhole Flow Monitoring</td>
<td>Injection rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In-Well Micro Seismic</td>
<td>Integrity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In-Well Gravity</td>
<td>Limited application</td>
<td></td>
<td></td>
<td>Not considered</td>
<td></td>
</tr>
</tbody>
</table>
4D seismic feasibility through modelling

Static/dynamic reservoir model

PEM 1. Used log-derived regressions and Gassmann equations to compute Porosity/NTG/Saturation changes to elastic properties

PEM 2. Laboratory acoustic travel time testing, cycling over pore pressure to derive pressure change effects on elastic properties
4D seismic feasibility – Pressure change effects

PEM 2. Laboratory acoustic travel time testing, cycling over pore pressure to derive pressure change effects on elastic properties

FracTech Laboratories

42/25d-3 core plugs
4D seismic feasibility
Can AVO separate out pressure & saturation effects?

EEI sensitivity to Pressure/Saturation from logs

EEI_S = AI(cos\(\chi\)) + GI(sin\(\chi\))

Por NTG Sat1 Sat2
Press1 Press2

Petro-Elastic Model

Vp/Vs/Rho1 Vp/Vs/Rho2

Syn1 Syn2

Syn(2-1)
4D dynamic modelling
Saturation and Pressure after 20 years

Saturation

Pressure

The Don Valley CCS Project is co-financed by the European Union’s European Energy Programme for Recovery. The sole responsibility of this publication lies with the author. The European Union is not responsible for any use that may be made of the information contained therein.
4D seismic modelling Saturation, Pressure, Impedance

Saturation

Pressure

After 20 years

EEI_S

AI

EEI_P
4D seismic modelling Saturation, Pressure, Synthetics

Saturation

Pressure

After 20 years

Syn_EEI_S(20-0) Syn_AI(20-0) Syn_EEI_P(20-0)
4D seismic modelling
highlighting pressure signal relaxation

Syn_EEI_S(n-0) Syn_AI(n-0) Syn_EEI_P(n-0)

At end of injection

5 years after end of injection
Conclusions on Time-lapse seismic

- High amplitude sensitivity to modelled saturation changes
 - Large seismic contrast between CO₂ and brine in pore space
- Low amplitude sensitivity to modelled pressure changes
 - Open system, large aquifer

- Time-lapse seismic is an effective tool for monitoring CO₂ plume migration
Microseismic addresses MMV objectives

- Need to demonstrate through monitoring that the injected CO$_2$ is contained within the geological store during and after injection
- Comparison of actual vs modelled CO$_2$ plume migration
- Verification of well and reservoir integrity
Microseismic

- Feasibility study
 - Wavefields
 - Sensitivity
 - Location accuracy

After 430ms

Seabed detectors

Velocity profile

Depth (m)

Distance (m)

Microseismic event
Microseismic

- Feasibility study
 - Wavefields
 - Sensitivity
 - Location accuracy

- Seabed array would have sensitivity to events > -1.1 magnitude at Top Bunter in area of interest

- (-2–0 is nano event, length scale 1-10m, displacement 40-400 µm)
Conclusions & Discussion

- Requirement of a MMV plan is to demonstrate that
 - Injected CO\textsubscript{2} is contained within the geological store
 - During and after injection
- Comparison of actual vs modelled CO\textsubscript{2} migration – 4D
- Verification of well and reservoir integrity - Microseismic
- Longer timelines than typical N Sea projects
- Importance of acquiring baseline data
 - e.g. baseline 2D/3D seismic; background seismicity
- MMV plan is reviewed annually in light of data acquired
Acknowledgements

- The EU’s European Energy Programme for Recovery (EEPR) for funding the Don Valley Power Project and both EEPR and the Energy Technologies Institute for funding the first CCS appraisal well in UK waters
- Tim Wynn, Scott Dingwall & Simon Wright
- Frederic Fortier & Christophe Maisons (Magnitude)
- Everyone who has been involved with this project over the last 5+ years
Thanks & Questions